B501 Assignment 1

Due Date: January 18, 2012
 Due Time: 11:00pm

1. Prove by mathematical induction that

$$
\forall n \geq 0: \sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

2. Prove by mathematical induction that

$$
\forall n \geq 0: 13^{n}-6^{n} \text { is divisible by } 7
$$

3. Prove by mathematical induction that

$$
\forall n \geq 2: 1+2^{n}<3^{n}
$$

4. Consider the following function sum from the natural numbers to the natural numbers. The natural numbers are denoted by N in this function.
```
function sum(n in N): N
{
    if n==0 return 0
    else return n + sum(n-1)
}
```

Prove by mathematical induction that

$$
\forall n \geq 0: \operatorname{sum}(n)=\frac{n(n+1)}{2}
$$

5. Define the set \mathcal{B} of binary trees as follows:
(a) A tree with a single node r is in \mathcal{B}; and
(b) If r is a node and T_{1} and T_{2} are binary trees, i.e., $T_{1} \in \mathcal{B}$ and $T_{2} \in \mathcal{B}$, then the tree $T=\left(r, T_{1}, T_{2}\right)$ is a binary tree, i.e., T is in \mathcal{B}. You should view T as a tree with root r with r having as left child the tree T_{1} and as right child the tree T_{2}.

Define a node of a binary tree to be a full if it has both a non-empty left and a non-empty right child. Prove by structural induction that the number of full nodes in a binary tree is 1 fewer than the number of leaves. (Hint: Consider binary trees as defined in class.)
6. Let E denote the set of arithmetic expressions. The recursive definition for E is as follows:

- if n is a positive integer then n is in E;
- if e_{1} and e_{2} are in E, then $\left(e_{1}+e_{2}\right)$ is in E;
- if e_{1} and e_{2} are in E, then $\left(e_{1} * e_{2}\right)$ is in E.

Write a recursive function Replace using appropriate pseudo-code which takes as input an expression in e in E and returns an expression in E wherein each number is replaced by the number 1 .
For example, if e is the expression

$$
((((2+3) * 3) *(5+(3 * 5))))
$$

then Replace (e) is the expression

$$
((((1+1) * 1) *(1+(1 * 1))))
$$

Then prove by structural induction on the recursive definition of the expressions in E that the value of an expression e in E is at least the value of Replace (e).
For example, the value of

$$
((((2+3) * 3) *(5+(3 * 5))))
$$

is 300 , whereas the value of

$$
((((1+1) * 1) *(1+(1 * 1))))
$$

is 4 .

